
FLXLab 2.3

An experiment generator for the free world
c©2009 Todd R. Haskell

API

1

Contents

1 Overview 3

1.1 What you need . 3

1.2 What you need to know . 3

1.3 Structure of this document . 3

2 How FLXLab works with modules 4

2.1 How modules are loaded . 4

2.2 How modules add functionality to FLXLab 5

3 How to write a module 5

3.1 Organization of directories and files 5

3.2 Master source files . 5

3.3 Ordinary source files . 7

3.4 Initialization functions . 7

3.5 Data messages . 7

3.6 Adding commands . 9

3.7 Adding event types . 10

3.8 Building your module . 12

4 FLXLab Internals 13

4.1 The FlxObject Class . 13

4.2 The dependency hierarchy . 14

4.3 Updating . 15

4.4 Static and dynamic objects . 17

4.5 Modules, scopes, and scope exit hooks 20

4.5.1 Beginning and ending a scope 21

4.5.2 Deleting a scope . 22

2

1 Overview

FLXLab has an inherently modular design. The core program only provides the
basic “engine” for running scripts. All other features are provided by add-on
modules. For example, there are separate modules that handle presentation of
graphical stimuli, text, and sounds. Another module handles dialog boxes. The
start-up screen is implemented as a separate module as well.

Because of this design, it is relatively easy to write new modules that additional
features. For example, you could write a module that allows FLXLab to inter-
act with a particular piece of hardware. This has been done for the EyeLink
eyetracking system. You could also write a module in order to conduct experi-
ments with a complex trial structure that is not easily implemented in ordinary
scripts.

1.1 What you need

• The source code distribution of FLXLab (flxlab-VERSION-src.zip).

• The FLXLab development package (flxlab-VERSION-devel.zip).

• An appropriate command-line compiler and the associated tools for your
system. If you use Linux, you should already have these. If you use
Windows, you will need to download and install them. The Windows
version of FLXLab was built with the MinGW port of the gcc compiler
and the MSYS shell, available at http://www.mingw.org.

• If you want to access any of the features that depend directly on Allegro
(primarily graphics and text presentation), you may need the DirectX
SDK for Allegro, available at http://alleg.sourceforge.net/wip.html. The
current version of Allegro as of the time this was written uses DirectX 7.
Make sure to download the version for MinGW.

1.2 What you need to know

• A basic knowledge of how to use FLXLab to create an experiment, includ-
ing such concepts as events, conditions, objects, etc.

• A working knowledge of the C++ programming language.

• How to build applications using command-line programs such as make and
gcc/g++.

1.3 Structure of this document

This document is divided into three parts. Section 2 provides a description of
how FLXLab works with modules. Section ?? describes how to write, build and

3

install your own module. Section ?? provides additional technical details about
how FLXLab works that are useful for creating more complex modules.

2 How FLXLab works with modules

2.1 How modules are loaded

Within the main FLXLab installation directory, there are two sub-directories
that are important for the use of modules. The first of these is called config.
This directory contains one script file for each module. For example, the graphics
module has a configuration script called graphics config.flx. When FLXLab
starts up, it reads and executes each script it finds in the config directory.

The configuration script for a module typically does three things:

1. Loads any modules that the current module depends on.

2. Loads the current module itself.

3. Carries out any necessary configuration of the current module.

For example, here are the contents of the file startscreen config.flx, which
controls the loading of the startscreen module:

UseModule graphics
UseModule gui

UseModule startscreen

UseEditor "NotePad"

The startscreen module depends on the graphics module and the gui mod-
ule, so the first two lines make sure those modules are loaded before the startscreen
module itself is loaded. This is necessary because the configuration scripts can
be read and executed in any order. It’s okay to call UseModule on a module
more than once; if the module is already loaded, the command will simply be
ignored.

Next, the startscreen module itself is loaded.

Finally, the module is configured. The start screen provides a button for editing
a script; the UseEditor command is provided by the startscreen module, and
specifies what program should be run to do this editing.

The second sub-directory that is important for the use of modules is called
modules, and it contains the actual module files. Note that the name of the
module file is determined by adding flx to the beginning and .dll to the end

4

of the module name (for Windows) or libflx to the beginning and .so) to the
end (in Linux). Thus, in Windows the file containing the graphics module is
called flxgraphics.dll.

2.2 How modules add functionality to FLXLab

When a module is loaded using UseModule, FLXLab calls an initialization rou-
tine within that module. Depending on the module, the initialization routine
can do any or all of the following:

• Add a new command. For example, the startscreen module adds the
command UseEditor.

• Add a new variable. For example, the graphics module adds the variables
black, white, red, etc., corresponding to predefined colors.

• Add a new condition. For example, the typedgui module adds the key,
mouse, and joystick conditions.

• Add an event hook. An event hook is a function that gets called before,
after, or during a particular type of event. For example, the graphics
module adds an event hook called clear screen that gets called prior to
the beginning of each trial.

A module may optionally define a cleanup routine which is called when the
module is unloaded.

3 How to write a module

3.1 Organization of directories and files

By convention, the name of the directory containing the source code for a module
is formed by adding mod to the beginning of the module name. Thus, the
directory containing the source code for the text module is mod text. The
development package contains source code for a sample module in a directory
called mod sample. Figure 1 shows the organization of directories and files for
this module.

3.2 Master source files

Each module has a “master” source file, which is named by adding flx to the
beginning and .cpp to the end of the module name. For the sample module, it is
called flxsample.cpp. This module contains the master initialization function
that gets called when the module is loaded, along with a cleanup function that

5

Figure 1: The layout of a source code directory for a module

is called when the module is unloaded. The cleanup function is optional. By
convention, the actual functionality of the module is provided by other source
files; in this case they would be sample commands.cpp and sample events.cpp.
Each such file should contain its own initialization function. The master ini-
tialization function should call the file-specific initialization functions. By con-
vention, these functions are named by adding flx to the beginning of the file
name, and replacing .cpp with init at the end. So, the initialization function
for sample commands.cpp would be flx sample commands init. The following
shows the contents of flxsample.cpp to illustrate how this all works:

#define FLX_INCLUDE_MODULE_HEADER
#include <flxbase.h>

extern void flx_sample_commands_init(void);
extern void flx_sample_events_init(void);

/***/

extern "C" {

FLX_START_MODULE_INIT

string cur_function="sample_module_init";

flx_data->write_message(FLX_DATAINFO,cur_function,"Initializing sample module");
flx_sample_commands_init();
flx_sample_events_init();

FLX_END_MODULE_INIT

}

/***/

6

For most simple modules, you can create your own master source file by editing
this one as follows:

1. Edit the extern declarations near the beginning of the file to correspond
to the file-specific initialization functions.

2. Edit the lines where flx sample commands init and flx sample events init
are actually called to call your own functions instead.

3. Change the three locations where you find the word “sample” in a string
constant to be the name of your module.

3.3 Ordinary source files

By convention, the code that actually does the “work” of the module is con-
tained in one or more separate source files (rather than being included in the
master source file). For a simple module, you may only need one such source
file. For example, the startscreen module has only one ordinary source file,
called startscreen.cpp. For more complicated modules, you may need several
ordinary source files.

3.4 Initialization functions

The structure of each ordinary source file is similar. The file should contain
a file-specific initialization function, named as described above. The following
shows what this function looks like for sample commands.cpp.

void flx_sample_commands_init(void){
string cur_function="flx_sample_commands_init";

flx_add_command("Power",Power);
flx_add_command("Factorial",Factorial);

} /* flx_sample_commands_init */

3.5 Data messages

In many of the code snippets provided in this document, you can find lines like
the following:

flx_data->write_message(FLX_DATAINFO,cur_function,"Initializing sample module");

These lines send messages to the data file. Within FLXLab, data files are rep-
resented by a class object. The variable flx data always points to the current

7

data object. To send a message to the data file, you can use the write message
member function. This function takes three arguments. The first argument is
a constant that indicates the type of message. These correspond to the types
that can be used with the RecordToDataFile command, as shown below:

Message type Constant for use with
write message

Purpose of message

ERROR FLX DATAERROR To indicate to the user that an error has
occurred

DATA FLX DATADATA To record data from an experiment
INFO FLX DATAINFO To record information about setup and

configuration, such as the day and time
a script was executed, the screen resolu-
tion and color depth, whether millisecond
or microsecond timing is being used, or
that a particular module has been loaded

EVENT FLX DATAEVENT To indicate that an event is being exe-
cuted

SCRIPT FLX DATASCRIPT To indicate that a script command is be-
ing executed

HOOK FLX DATAHOOK To indicate that a hook function is being
called

DEBUG FLX DATADEBUG To provide low-level diagnostic or debug-
ging information

DDEBUG FLX DATADDEBUG To provide even more detailed debugging
information

DDDEBUG FLX DATADDDEBUG To provide extremely detailed debugging
information

The use of some of these message types is discussed further in the following
sections.

The second argument is a string which indicates the function that is generating
the message. In most FLXLab code, a string called cur function is defined
at the beginning of each function, and initialized to contain the name of the
function. This variable is then passed any time the write message function
is called. This approach makes it easier to do things like change the name of
a function, combine two functions into one, or split a single function into two
functions, since all that is required is to adjust the definition of cur function
accordingly.

The third argument is a string which contains the message itself.

Messages generated with the write message function are stored in a message
queue. Periodically, FLXLab examines each message in the message queue and
determines whether it should be written to the data file or discarded. This
decision is determined by the type of the message. If that message type is
set to be recorded, it is written to the data file. Otherwise, the message is

8

discarded. Whether a particular message type is recorded or not is controlled
by the RecordToDataFile command.

Note that this decision is based on the recording settings at the time the message
queue is processed, not the settings at the time the message was originally
generated. In general, the message queue is processed at the beginning and
end of a session, and at the end of each execution of a TrialEvent. A session
begins the first time a compound event is executed. Events of type TrialEvent,
BlockEvent, ExperimentEvent and GroupingEvent are all compound events.
The session ends when that same compound event finishes executing. If you
want the message queue to be processed at some other time, you can force this
to happen with the flush member function, which takes no arguments:

flx_data->flush()

3.6 Adding commands

The initialization function shown earlier adds two commands to FLXLab, Power
and Factorial. Commands are added with the flx add command function.
This function takes two arguments. The first argument is the string that is
used to invoke the command in a script file. This string should not contain any
white space. The second argument is the name of a function that will be called
when the command is executed.

The definition for the Power function is shown below. This function takes value
and raises it to the power specified by exponent.

bool Power(long *value,long *exponent){
string cur_function="Power";
long base, i;

if(*exponent>=0){
base=*value;
*value=1;
for(i=0;i<*exponent;i++){
value=base;

}
flx_data->write_message(FLX_DATASCRIPT,cur_function,"Raising variable to the "+flx_convert_to_string(*exponent)+" power; new value is "+flx_convert_to_string(*value));
return true;

} else {
flx_data->write_message(FLX_DATAERROR,cur_function,"Exponent for this command must be non-negative");
return false;

}

} /* Power */

Functions that are to be used as commands will be referred to as command

9

functions. Command functions must always return a bool. The function should
return true if the command was successful, and false if it was not. If the
function returns false, FLXLab will display an error message indicating that
the command has failed.

Command functions can take from 0 to 4 arguments. All arguments must be
pointers. This allows a command function to modify one or more of the argu-
ments passed to it, as the Power function modifies the value argument. The
type being pointed to must be one that FLXLab knows how to work with. The
basic types FLXLab understands are long, bool, float, and string. In addi-
tion, arguments can be FLXLab-defined types such as FlxEvent, FlxCondition
and FlxGraphicsObject, which are discussed below.

The arguments passed to the function correspond to the arguments provided
with the command in the script file. For each type that can be used as an
argument, there is a function that takes the string that appears in the script,
and converts it to a pointer to the appropriate type. If the argument is a
variable, FLXLab converts it to a pointer to the value of the variable. If the
argument is a literal value, FLXLab essentially creates an anonymous variable
with that value, and passes a pointer to it. Thus, a command function can
always safely modify any argument passed to it, though the effects of the that
modification may not be evident in the case of an anonymous variable. For
example, both of the following instances of the Power command will execute
without errors:

Counter foo 2
Power foo 2
Power 2 2

In the first case, the result of the computation will be stored in the variable
foo. In the second case, however, there is no way to access the result of the
computation.

Each command function should generate a message of type FLX DATASCRIPT
upon successful execution of the command. This message should generally con-
vey some information about what the command has done, as in the Power
function shown above. A command function should also generate a message
of type FLX DATAERROR if execution of the command was unsuccessful. This
message should provide information about why the command failed. Command
functions may optionally generate messages of one of the debugging types to
provide detailed information about what the function is doing.

3.7 Adding event types

To add a new type of event to FLXLab, you first need to define a class derived
from FlxEvent, as in this example taken from sample events.cpp:

10

class IncrementEvent : public FlxEvent {
long *d_counter;

public:
IncrementEvent(string name,long *counter) : FlxEvent(name), d_counter(counter) {}
~IncrementEvent(void) {}
void execute(void);

};

void IncrementEvent::execute(void){
string cur_function="IncrementEvent::execute";

flx_data->write_message(FLX_DATAEVENT,cur_function,d_name);
this->do_generic_event_processing();
(*d_counter)++;

}

All events must have, at a minimum, a constructor, a destructor, and a member
function called execute which is called when the event is to be executed. Every
execute function should do at least two things. The first is to make a call to
write message indicating that that an event is being executed. The second
is to call the member function do generic event processing. This function
does some internal housekeeping that needs to be done for all events.

Once you have defined your event class, you need to define a command function
that creates an instance of this class. All command functions that create an
event should take the name of the event as the first argument. You may option-
ally use additional arguments to specify particular characteristics of the event,
as with the variable counter in the example below:

bool NewIncrementEvent(string *name,long *counter){
string cur_function="NewIncrementEvent";
IncrementEvent *iep;

flx_data->write_message(FLX_DATASCRIPT,cur_function,"Creating new IncrementEvent ’"+*name+"’");
iep=new IncrementEvent(*name,counter);
flx_add_scalar_source(iep,counter);
return true;

} /* NewIncrementEvent */

All command functions that create an event need to do two things. First, as
with all command functions, make sure your command function generates a
message indicating what the command is doing. Second, create an instance of
your class. As long as your class is derived from the type FlxEvent, the class
constructor will take care of registering the new event with FLXLab so that it
can be referred to in the script.

11

In some cases your event class may have data members which are set based on
arguments to the command. In this example, the class IncrementEvent has a
data member called d counter, which is set to be the second argument passed to
NewIncrementEvent. In FLXLab, this sort of relationship between two objects
is called a dependency: The behavior of the event pointed to by iep depends
on the value pointed to by counter. The function flx add scalar source tells
FLXLab about the existence of such a dependency. The first argument should
be a pointer to your event; the second argument should be a pointer to the
value it is dependent on. The second argument can be a pointer to any basic
type used by FLXLab, i.e., long, bool, float and string (even though string
is technically a class type). There is another function flx add object source
that can be used when there is a dependency between an event and a FLXLab-
defined type, such as another event. Dependencies are discussed in much more
detail in a separate section below.

Finally, you need to register your command function with FLXLab. This should
be done in the initialization function for the source file where your event class
is defined. This is done in exactly the same way as for any other command
function, as shown below:

void flx_sample_events_init(void){
string cur_function="flx_sample_events_init";

flx_add_command("IncrementEvent",NewIncrementEvent);

} /* flx_sample_events_init */

3.8 Building your module

In order to actually build your module, you need have a file named Makefile in
the module directory. Since all modules are built in essentially the same way,
most makefiles for modules simply execute a default module makefile. Thus,
the contents of Makefile for mod sample are just this:

include ../Makefile.modules

For this to work, you will need to put your module directory inside the FLXLab
source directory, alongside the directories for the basic modules provided with
FLXLab, as shown in Figure 2. As long as you have already built the basic
FLXLab program, so that the necessary libraries have been created, you should
be able to build your module by simply typing make on the command line. If
the module builds successfully, you can then install it by make install. Note
that this will install it in the same place as the rest of the FLXLab program. It
should also install the config file for your module (as long as you have named
it properly) so that your module will be automatically loaded when you run
FLXLab.

12

Figure 2: Placing a new module directory inside the FLXLab source directory

For a simple module, such as a module to let FLXLab interface with a particu-
lar piece of hardware, this is probably all the information you need to know. If
you want to write a more complex module, or if you just want to better under-
stand how FLXLab works, the remainder of this document provides a detailed
description of some of the internal functioning of the program.

4 FLXLab Internals

This section of the document describes some of the internal workings of FLXLab.
Knowing this information is not necessary for writing simple modules, but may
be useful for troubleshooting, debugging, or if you want to write more com-
plex or sophisticated modules. This section only describes certain aspects of
the program; additional information may be added to this section with future
releases.

4.1 The FlxObject Class

To provide a consistent interface for working with objects and variables created
by a script, FLXLab makes use of a class called FlxObject. Events, graphics ob-
jects, positions, colors, lists, etc. are all represented by classes derived from this
base class. All objects derived from FlxObject have several common properties
that can be accessed through the FlxObject interface:

• A name, which can be used to refer to the object in a script.

13

• A value, which is what gets passed to a command when the name is used
as an argument.

• A list of dependencies (discussed further below).

• A scope name (also discussed below).

• An update function (also discussed further below).

FLXLab maintains a list of all FlxObjects that are created. The constructor
for FlxObject adds the object being created to this list. This functionality
is inherited by any derived classes. For example, creating an object of type
IncrementEvent (as discussed above) will result in that object being added to
the list.

Once an object is in the list, you can look it up based on its name using the
flx get object function. The most common reason for looking up an object
in the list is in order to convert an argument in a script into a pointer that can
be passed to the command function. In this context, we don’t simply want any
object derived from FlxObject that has a given name. Rather, we are looking
for an object of a particular type. This is handled by making flx get object a
template function, where you specify the type you are looking for as the template
parameter, like this:

FlxEvent *ep;

ep=flx_get_object<FlxEvent>("my_event");

If there is an object in the list named my event, and this object is a FlxEvent
or can be cast to that type, the function will return a pointer to that object. If
there is no object with that name, or if there is such an object but it cannot be
cast to FlxEvent, the function will return NULL.

4.2 The dependency hierarchy

In a typical experiment, the stimulus presented to a subject varies from trial to
trial. For example, suppose the stimulus consists of a word which is different
on each trial. One would usually put the word to be presented on each trial in
a column of the stimulus list, and then create a TextObject which is linked to
this column. The TextObject would then be attached to a DisplayEvent which
handles the actual drawing of the word on the screen.

In FLXLab, this state of affairs is captured by the notion of a dependency.
Consider the following excerpt from a script:

LabelListColumn 1 stimulus_word

14

TextObject stimulus $stimulus_word

DisplayEvent show_stimulus
AddObject stimulus

In order to know what to draw on the screen, the show stimulus event needs to
access the object stimulus. Thus, we say that show stimulus is dependent on
stimulus. Note that a dependency relationship is directional; we refer to the
object which needs to access another object as the dependent, and the object
that is accessed as the source. In this example, show stimulus would be the
dependent, and stimulus would be the source. Note that there is another
dependency in this script as well: stimulus is dependent on stimulus word.
FLXLab keeps track of dependencies by the use of a dependency hierarchy. This
is implemented by having each FlxObject store a list of any dependent objects
and a list of any source objects.

You can tell FLXLab about a dependency relationship using the two functions
flx add scalar source and flx add object source. Both commands take
a pointer to the dependent as the first argument. The dependent must be a
class derived from FlxObject. The second argument is a pointer to the source.
Use flx add scalar source if the source is one of FLXLab’s basic types, i.e.,
long, bool, float or string. Use flx add object source if the source is a
class derived from FlxObject, like a FlxEvent or FlxGraphicsObject. Both
functions will cause the dependent to get added to the list of dependents for the
source, and the source to get added to the list of sources for the dependent.

As a final observation, note that we can distinguish between a direct source and
an indirect source. This distinction is analogous to the distinction between a
direct base class and an indirect base class in C++, i.e., an indirect source is
a source of a source. In the example above, we would say that stimulus is a
direct source of show stimulus, while stimulus word is an indirect source.

4.3 Updating

The primary reason for having a dependency hierarchy has to do with updating
objects. All objects derived from FlxObject have a member function called
update. Updating is used in part to ensure that changes in a source object are
reflected in the behavior of any dependent objects. For example, the value of
stimulus word will change on each trial. The stimulus object is responsible
for actually drawing the bitmap of the word, so it’s behavior must also change.
Finally, show stimulus is responsible for creating the overall bitmap of the
entire display, and so this must also change on each trial. Thus, whenever a
change occurs to an object, we need to make sure the update function gets
called for each of its dependents. The dependency hierarchy provides a way to
do that.

The actual updating gets carried out by a member function called update object and dependents.

15

This function does two things:

1. Builds a list of all the objects that need to be updated.

2. Calls the update function for all of these objects, in order.

For purposes of step 1, we start off with an empty list. This list is then passed
to a member function called add to update list. This function also does two
things:

1. Adds the current object to the end of the list. If it is already in the list,
move it to the end.

2. Calls add to update list on all the dependents of the current object.

Let’s look at how this works with a concrete example. Consider the following
excerpt from a script:

StimulusList my_stimuli "stimuli.txt"
LabelListColumn 1 red
LabelListColumn 2 green
LabelListColumn 3 blue

DefineColor my_color $red $green $blue

RectangleObject my_rect
Color my_color

We can represent the dependency relationships in this situation as follows:

Source Dependent
my stimuli red
my stimuli green
my stimuli blue
red my color
green my color
blue my color
my color my rect

The initial change in this scenario is that the stimulus list advances to the next
item in the list. Thus, we call update object and dependents for my stimuli,
and it in turn calls add to update list to build the list of objects that needs
to be updated. This will first add my stimuli to the list. It will then proceed
to recursively call add to update list for red, green and blue. When it is
called for red, it will be recursively called for my color, and so on. After we’re
done with the process for red, the update list will look like this:

16

my stimuli
red
my color
my rect

If we just proceeded to do the process for green next, we would end up with a
list that looks like this:

my stimuli
red
my color
my rect
green
my color
my rect

We really only need to update each object once, after all of its sources have been
updated. Thus, if add to update list gets called for an object that is already
in the update list, instead of adding the object to the list again, it gets moved
to the end of the list. The result is that the final update list actually looks like
this:

my stimuli
red
green
blue
my color
my rect

Once the update list has been generated, the update member function is called
for each object, in order. This ensures that moving to the next item in the
stimulus list results in the appropriate change in the color of my rect.

4.4 Static and dynamic objects

For purposes of updating, FLXLab distinguishes between two types of objects.
Static objects do not change from trial to trial, while dynamic objects do change
from trial to trial. The updating process works somewhat differently for the two
types of objects.

Internally, FLXLab defines the difference between the two types of objects as
follows. Technically, it is not advancing to the next item in the stimulus file that
triggers the updating described above. Rather, FLXLab defines a special object
called flx dependency root, and calls update object and dependents for this
object at the beginning of each trial. Thus, making flx dependency root a
source for an object will cause that object to be updated before each trial. The
current stimulus list always has flx dependency root as a source. An object
is considered dynamic if it has flx dependency root as a source, either direct
or indirect. Otherwise, it is considered static.

17

Let’s take another look at the script commands discussed above in the context
of updating; they are repeated here for convenience.

StimulusList my_stimuli "stimuli.txt"
LabelListColumn 1 red
LabelListColumn 2 green
LabelListColumn 3 blue

DefineColor my_color $red $green $blue

RectangleObject my_rect
Color my_color

The object my stimuli is dynamic, since a stimulus list always has flx dependency root
as a direct source, as discussed above. The objects red, green and blue will
also be dynamic, since they have flx dependency root as an indirect source.
The same applies to my color and my rect.

Now consider a slightly different set of script commands:

DefineColor my_color 70 140 210

RectangleObject my_rect
Color my_color

In this case both my color and my rect would be static, since they only depend
on constants.

The general rule for updating is that dynamic objects are only updated at the
beginning of each trial, while static objects are typically updated when there is
a change in their list of sources. This is the sort of situation that occurs when
you use the AddObject command:

DisplayEvent show_stimulus
AddObject stimulus

The object stimulus gets added as a source of show stimulus. If show stimulus
is determined to be static, then update object and dependents will be called
on show stimulus as the last step in executing the AddObject command.

This situation also occurs when you set the properties of a graphics object:

RectangleObject my_rect
Color red

The object red will be added as a source of my rect; if my rect is static, this
will trigger an update. In either of these situations, adding a source will not
trigger an update if the object with the new source is dynamic.

18

Note that an object can change from static to dynamic during the course of a
script, as illustrated by the following sequence of commands:

StimulusList my_stimuli "stimuli.txt"
LabelListColumn 1 red
LabelListColumn 2 green
LabelListColumn 3 blue

DefineColor my_color $red $green $blue

RectangleObject my_rect
Size 100 200
Color my_color

After the completion of the Size command, my rect is static, as its only sources
are the two constants 100 and 200. Thus, it will get updated at that point. How-
ever, after the completion of the Color command, my rect becomes dynamic,
since it now has a stimulus list as an indirect source. Thus it will not be up-
dated again at that point; rather, it will be updated the next time a TrialEvent
is executed.

The distinction between static and dynamic objects helps address two issues.
For objects which are dependent on the contents of a stimulus file, it doesn’t
make sense to update them when a source is added, because they will only need
to be updated again when the value of that source changes at the beginning of
the first trial. On the other hand, for an object that does not change from trial
to trial, such as a fixation cross that is displayed for each trial, it doesn’t make
sense to update it with every trial, because such updating would be redundant.
Furthermore, for events that occur outside of a trial, like an event that displays
instructions read from a text file, it is actually necessary to update it before any
TrialEvent occurs, or the instructions won’t get displayed.

Note that updating of static objects is not automatic. Rather, you need to call
the function flx process dependencies on an object after adding a source in
order to trigger an update. For example, the command function JoinStrings
includes the following sequence of function calls:

flx_add_scalar_source(js,string_ptr);
flx_process_dependencies(js);

The function flx process dependencies will trigger an update if js is static,
and do nothing otherwise.

It isn’t always necessary to call this function after adding a source. You only
need to call it if adding the source could potentially result in incorrect behavior
of the object or its dependents unless they are updated. For example, for the
function that creates objects of type IncrementEvent, which was discussed

19

earlier, adding the amount to increment by as a source doesn’t require the
object itself to be updated, nor will it cause problems with any dependents.

4.5 Modules, scopes, and scope exit hooks

In FLXLab, the lifetime of a particular command, variable, object, etc. is deter-
mined by its scope. Scopes are used to group together commands, variables and
objects that should be deleted at the same time. Note that unlike in program-
ming languages such as C, scopes do not determine the visibility of a particular
object; all objects can be accessed by any script from the point where they are
created until they are deleted.

The various scopes used by the program form a hierarchy. At the broadest
level is a scope called BASE. This scope begins when FLXLab starts up, and is
deleted when the program exits. Each script file, including configuration scripts,
defines another scope. Finally, each module also defines a scope. As an example,
a scope hierarchy for running the reaction time I demo is shown below:

BASE
graphics_config.flx.1
graphics

gui_config.flx.2
gui

sound_config.flx.3
sound
soundriver

sounddriver_config.flx.4
startscreen_config.flx.5
startscreen

text_config.flx.6
text

startscreen_dialog
startscreen_script
reaction_time_I.flx.7

When the program starts up, it finds the script graphics config.flx in the
config directory and executes it. This begins a scope called graphics config.flx.1,
which is contained within the scope BASE. (For scopes associated with a particu-
lar script file, the name of the scope is the name of the script file plus a numeral.
The numeral increases by one for each script file read. This ensures that even
if the same script file is read twice, it will result in two different scopes.) This
is the scope for any variables or objects created by the configuration script.
The graphics configuration script calls UseModule to load the graphics module,
and when that module loads it defines another scope called graphics, which is
contained within the scope graphics config.flx.1. This is the scope of any
commands, variables, etc. that are added by the module. Once the graphics

20

module is loaded, the scope graphics ends. Any additional objects or variables
created by the configuration file will again have scope graphics config.flx.1.
At the end of the configuration script the scope graphics config.flx.1 ends,
and the current scope reverts back to BASE.

The primary purpose of scopes is to provide a mechanism to clean up the vari-
ables objects, variables, and commands created by scripts, modules and configu-
ration files. For example, if a module awesome adds a new command CoolEvent,
then that command needs to be removed when the module is unloaded. This is
accomplished by keeping a list of all commands along with the scope for each
one. Thus, CoolEvent will be associated with the scope awesome. When the
scope awesome is deleted, FLXLab will automatically remove all commands that
are associated with that scope. In most cases, the module itself doesn’t need to
do any cleanup. The same applies to variables, conditions, etc. For the most
part, FLXLab creates and ends scopes automatically, and so you don’t usually
need to worry about this. However, in some cases it may be useful to know how
the process actually works.

4.5.1 Beginning and ending a scope

There are four ways in which a new scope begins. First, a new scope automati-
cally begins every time a script file is read. The scope name is the name of the
script file plus a numeral, e.g., graphics config.flx.1. All objects, variables,
etc. created by the script file will have this scope. The scope ends when the
end of the script file is reached. Note that this applies both to regular script
files and to configuration files.

A new scope also automatically begins every time a module is loaded. The
scope name is the same as the module name, i.e., the scope for the module
mod graphics is graphics. All objects, variables, etc. created by the module
will have this scope. The scope ends once the module has finished loading.

A new scope can also be created by an explicit call to the function flx begin scope.
This function takes one argument, a string indicating the name of the scope.
For example, the startscreen module creates a scope called startscreen dialog
in this way. This provides a mechanism for modules to control the lifetime of
objects created via source code (as opposed to by a script). A scope created in
this way does not automatically revert to the previous scope; it will continue
until explicitly ended by calling flx end scope with the name of the scope as
an argument.

Finally, a new scope can be created explicitly by the user using the BeginScope
command, which also takes the name of the scope as an argument. A scope
created in this way also does not automatically revert to the previous scope;
you need to explicitly end it with EndScope, again providing the name of the
scope as an argument.

21

4.5.2 Deleting a scope

When a scope is deleted, all commands, variables and objects associated with
that scope are deleted as well. There are three basic ways in which a scope is
deleted. First, it can be deleted explicitly with the function flx delete scope.
This would be the usual way of deleting a scope that you create yourself in your
code.

Second, deleting a scope also deletes all scopes nested inside it, in the reverse
order in which they were created. This is how the FLXLab program cleans up
after itself when it is exiting; the scope BASE is deleted, and since all other scopes
are nested inside it, those scopes are deleted as well. This is also how FLXLab
cleans up after a script has been run via the start screen; the startscreen is
associated with a scope called startscreen script. The scope for a script run
via the startscreen is nested inside this scope. Once the script is done running,
the scope startscreen script is deleted, which causes the scope for the script
to be deleted as well.

The third way in which a scope can be deleted is with the EndScope command.
This command both ends and deletes the current scope.

22

